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Parallel programming challenges

Duplicated code

“oclMatrVecMul from the OpenCL
installation package of NVIDIA, three
steps — 1) creating the OpenCL context, 2)
creating a command queue and 3) setting
up the program — are achieved with 34
lines of code.”

Lack of Abstraction

The programmers should follow a
problem-oriented approach rather than
the current machine or architecture-
oriented approach towards parallel
problems.

Performance Evaluation

To make sure the obtained performance
cannot be further improved, a program
may need to be rewritten to different
parallel libraries supporting various
approaches (shared memory, GPUs, MPI)
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Research question

CUDA p-threads
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Is it possible to express parallel programs in a
platform-independent manner?
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Solution approach

AbstractAPIs: Design a DSL that can express two leading
GPU programming languages

Support CUDA and OpenCL
Automatic data transfer

Programmer freed from device variables

CUDACL: Introduce a configurable mechanism through
which programmers fine-tune their parallel programs

Eclipse plugin for configuring GPU parameters
Supports C (CUDA and OpenCL) and Java (JCUDA, JOCL)
Capable of specifying interactions between kernels

CalCon: Extends our DSL to shared memory; such that

programs can be executed on a CPU or GPU

Separating problem and configuration
Support Fortran and C

Extend CalCon to a multi-processor using a Message Passing
Library (MPL)



Phase 1: Abstract APlIs

Design a DSL that can express two leading GPU programming languages

APl comparison of CUDA and OpenCL

Allocate Memory cudaMalloc cICreateBuffer XPUmalloc
clReadBuffer *GPUcall
Transfer Memory cudaMemcpy clWriteBuffer
*XPUrelease
Call Kernel <<< X,y >>> clEnqueueNDRange .
: clSetKernelArg *GPUinit
Block Identifier blockldx get_group_id
Thread Identifier threadldx get_local id
Release Memory cudaFree clReleaseMemObject

LOC comparison of CUDA, CPP and Abstract API

Vector Addition 3
2 Matrix Multiplication 28 14 12 3 14 6
3 Scan Test Cuda 82 NA 72 1 10 12
4 Transpose 39 17 26 2 13 8
5 Template 25 13 13 2 12 6
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Phase 2: CUDACL

Introduce an easily configurable mechanism through which programmers
fine-tune their parallel programs

CUDACL Configuration | 8]
Parallel blocks ~ Variables
The list of parallel blocks from the file AmmayAdd.c Variables identified and classified by static code analysis
= ArrayAdd |Add...| Input Variables [Ja [(0b [Jc
Output Variables Oc

Loop Variables [

~ GPU Execution parameters
Thread (work item) and block (work group) size
Thread(x) 256 Thread(y) 001 Thread(z) 001

Block(x) 001 Block(y) 001

[] use OpenCL API based on variable v

» Linking sequential file

Code Generation
) CUDA

) OpenCL Execute on the device | v

h, [ In same file

Generate code| 6



Phase 3: CalCon

Extend our DSL to shared memory such that programs can be
executed on a CPU or GPU

Design details of CalCon

@IIEI function calls + ccnﬁguraD

|
Generatingfbstract API

CDT parsing and refactoring

Y
Abstract API pre-defined functions

Y .
Generat}q‘g source code
»

CDT parsing and refactoring

= ~
CUDA code OpenCL code OpenMP code 5




GPU
languages

Hardware details
or lightweight
communication

Related works

|

CUDA
abstractions

—  hiCUDA

— CUDA-lite

— PGl compiler

CuPP
framework

{ OpenCL {Otherworks

—~

L CalCon

Only tool which
supports CUDA,
OpenCL, and

Shared memory

Concurrencer

Sequoia

Habenero
project

Not portable;
Only applicable for
GPUs from NVIDIA



Example: Matrix Transpose
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Matrix Transpose (CUDA kernel)

__global__ void transpose(float =xodata,
float+ idata,
int width,
int height){
int xIndex = blockDim.x % blockIdx.x + threadIdx.x:
int yIndex = blockDim.y * blockIdx.y + threadldx.y:

if (xIndex < width && yIndex < height){

int index_in = xIndex + width #* yIndex;
int index_out = yIndex + height * xIndex;
odata|index_out| = idata[index_in];

10



0 oW~ ®m m s WM

T T = =y
D O e W N O

Matrix Transpose (OpenMP)

void transpose(float =xodata,
float« idata,
int width,
int height){
#pragma omp parallel private(xIndex,ylndex)
num_threads (N)
default (shared){
#pragma omp for
for(int xIndex = (0; xIndex < width:; xIndex++)
for (int yIndex = 0; yIndex < height; yIndex++) {

int index_in = xIndex + width #* yIndex:
int index_out = yIndex + height = xIndex;
odata|index_out]| = idata|index_in|];
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Matrix Transpose (CalCon)

//Starting the parallel block named transpose

parallelstart (transpose);
Data Flow in GPU
//Use of abstract API getlevell 42 CUDA kernels

int xIndex = getLevell(); were selected
from 25 programs.

//Use of abstract API getLevel2

int yIndex = getLevel2(); Program analysis

15 OpenCL
if (xIndex < width && yIndex < height) { programs
int index in = xIndex +width*yIndex;
int index out = yIndex +height*yIndex; Shared memory
odata[index out]= idata[index 1n]; 10 OpenMP
} programs from

varying domains

//Ending the parallel block
parallelend (transpose) ;
Abstract DSL code for matrix transpose

http://cs.ua.edu/graduate/fjacob/software/analysis/



Conclusion and Future work

1. Abstract APIs can be used for abstract GPU programming
which currently generate CUDA and OpenCL code.

— 42 CUDA kernels from different problem domains were selected to identify
the data flow

— 15 OpenCL programs were selected to compare with their CUDA counter
part to provide proper abstraction

— Focus on essence of parallel computing, rather than language-specific
accidental complexities of CUDA or OpenCL

— CUDACL can be used to configure the GPU parameters separate from the
program expressing the core computation

2. Extend our DSL to shared memory; such that programs can
be executed on a CPU or GPU CalCon

—  Separating problem and configuration
—  Support Fortran and C

3. Extend the DSL to a multi-processor using a Message Passing
Library (MPL)
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OpenMP FORTRAN programs

Program Name Total LOC Parallel LOC No. of R
blocks
2D Integral with 0
Quadrature rule 601 11(2%) 1 v
Linear algebra routine 557 28 (5%) 4
Random number 80 9 (11%) 1
generator
Logical circuit 0
satisfiability 157 37 (18%) 1 v
Dijkstra’s shortest path 201 37 (18%) 1
Fast Fourier o
Transform 278 51 (18%) 8
Integral with Quadrature M 8 (19%) 1 J
rule
Molecular 215 48 (22%) 4 J
dynamics
Prime numbers 65 17 (26%) 1 N
Steady state heat 98 56 (57%) 3 J

equation
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Refined FORTRAN code (OpenMP)

! Refined FORTRAN program
call parallel (instance num,’satisfiability’)

ilo2 = ( ( instance num - id ) * ilo &
+ id ) * ihi ) &
/ ( instance num )
ihi2 ( ( instance num - id - 1 ) * ilo &
+ id + 1) * ihi ) &
/ ( instance num )
solution num local = 0

do i = ilo2, ihi2 - 1

call i4 to bvec ( i, n, bvec )

value = circuit value ( n, bvec )
if ( value == 1 ) then
solution num local = solution num local + 1
end 1if
end do
solution num = solution num + solution num local

call parallelend(‘satisfiability’)

! Configuration file for FORTRAN program above
block ‘satisfiability’

init:
!'Somp parallel &
!$omp shared ( ihi, ilo, thread num ) &
!Somp private ( bvec, i, id, ilo2, ihi2,
j, solution num local, value ) &
!Somp reduction ( + : solution num ).
final:.
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FORTRAN code (MPI)

!Part 1: Master process setting up the data
if (my_id == 0 ) then dop=1, pnum - 1

my a = ( real ( p_num - p, kind = 8 ) * a &
+ real ( p-1, kind =8 ) *b ) &
/ real ( p_num - 1, kind = 8

target = p

tag = 1

call MPI Send ( my a, 1, MPI DOUBLE PRECISION, &
target, tag, &MPI_COMM WORLD, &
error_flag

end do
!Part 2: Parallel execution
else
source = master

tag = 1
call MPI Recv ( my_ a, 1, MPI_DOUBLE_PRECISION, source,

&
MPI COMM WORLD, status, error flag )
my total = 0.0D+00
do i =1, my n
x = (real (my n - i, kind = 8 ) * my_a &
+ real ( i-1, kind=8) *my b ) &
/ real ( my_n - 1, kind = 8
my total = my total + f ( x
end do
my_total = (my b - my_a ) * my total / real
(my n, kind = 8 )
end if

!Part 3: Results from different processes are collected to
! calculate the final result

call MPI_Reduce ( my_ total, total, 1,
MPI_DOUBLE_PRECISION, & MPI_SUM,
master, MPI COMM WORLD, error flag)

tag,
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Refined FORTRAN code (MPI)

'Work share part

do p = 1, instance num - 1
my a = ( real ( instance num - p, kind = 8 ) * a
+ real ( p -1, kind =8 ) * b ) &
/ real ( instance num - 1, kind = 8

call distribute (my_a)
end do

!'Declaring parallel block
call parallel (num,’quadrature’)

my total = 0.0D+00
doi=1, myn

x = (real (my n - i, kind = 8 ) * my_a &
+ real ( i -1, kind =8 ) *my b ) &
/ real ( my n - 1, kind = 8
my total = my total + £ ( x )
end do
my total = (my b - my a ) * my total / real

( my n, kind = 8 )
call endparallel (‘quadrature’);

|
! Configuration file for FORTRAN program above
|

block ‘quadrature’

init:
source = master
tag = 1
call MPI Recv ( my a, 1, MPI DOUBLE PRECISION, source,
tag, &
MPI_COMM WORLD, status, error_ flag ).
final:

call MPI Reduce ( my total, total, 1,
MPI DOUBLE PRECISION, & MPI_ SUM,
master, MPI_COMM WORLD, error_ flag).
distribute param:
call MPI_Send ( param, 1, MPI_ DOUBLE_ PRECISION, &
target, tag, &MPI_COMM WORLD, &
error flag ).
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Parallel and OpenMP features

Shared memory features Parallel features

Variable modifiers, Critical and | Parallel blocks, Reduction and
Singular blocks, Barrier blocks,

Number of threads Number of instances,

Workshare




