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Parallel programming challenges 

“oclMatrVecMul from the OpenCL 
installation package of NVIDIA, three 
steps – 1) creating the OpenCL context, 2) 
creating a command queue and 3) setting 
up the program – are achieved with 34 
lines of code.” 

Duplicated code 

Lack of Abstraction 
The programmers should follow a 
problem-oriented approach rather than 
the current machine or architecture- 
oriented approach towards parallel 
problems. 

Performance Evaluation 

To make sure  the obtained performance 
cannot be further improved, a program 
may need to be rewritten to different  
parallel libraries supporting various  
approaches (shared memory, GPUs, MPI) 
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Research question  

CUDA 

OpenCL 

OpenMP 

Cg 

p-threads 

OpenMPI 

Is it possible to express parallel programs in a 
platform‐independent manner? 

CUDA 

OpenCL 

OpenMP 

Cg 
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Solution approach 
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1. AbstractAPIs: Design a DSL that can express two leading 
GPU programming languages 
– Support CUDA and OpenCL 

– Automatic data transfer 

– Programmer freed from device variables 

2. CUDACL: Introduce a configurable mechanism through 
which programmers fine-tune their parallel programs 
– Eclipse plugin for configuring GPU parameters 

– Supports C (CUDA and OpenCL) and Java (JCUDA, JOCL) 

– Capable of specifying interactions between kernels 

3. CalCon: Extends our DSL to shared memory; such that 
programs can be executed on a CPU or GPU 
– Separating problem and configuration 

– Support Fortran and C 

4. Extend CalCon to a multi‐processor using a Message Passing 
Library (MPL) 

 

 

 

 

 



Phase 1: Abstract APIs 
Design a DSL that can express two leading GPU programming languages 

Function CUDA OpenCL

Allocate Memory cudaMalloc clCreateBuffer

Transfer Memory cudaMemcpy
clReadBuffer

clWriteBuffer

Call Kernel <<< x , y >>>
clEnqueueNDRange

clSetKernelArg

Block Identifier blockIdx get_group_id

Thread Identifier threadIdx get_local_id

Release Memory cudaFree clReleaseMemObject

Sr. No Application CUDA LOC CPP LOC Abstract LOC #variables reduced #lines reduced API usage

1 Vector Addition 29 15 13 3 16 6

2 Matrix Multiplication 28 14 12 3 14 6

3 Scan Test Cuda 82 NA 72 1 10 12

4 Transpose 39 17 26 2 13 8

5 Template 25 13 13 2 12 6

•XPUmalloc 
•GPUcall 
•XPUrelease 
•GPUinit 

API comparison of CUDA and OpenCL 

LOC comparison of CUDA, CPP and Abstract API 
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Phase 2: CUDACL 
Introduce an easily configurable mechanism through which programmers 
fine-tune their parallel programs 
 

Configuration of GPU programs using CUDACL 
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Phase 3: CalCon 
Extend our DSL to shared memory such that programs can be 
executed on a CPU or GPU 
 

Design details of CalCon 
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Related works 

GPU 
languages 

Cg 

Brook 

CUDA 
abstractions 

hiCUDA 

CUDA-lite 

PGI compiler 

CuPP 
framework 

OpenCL 

CalCon 

Other works 

Concurrencer 

Sequoia 

Habenero 
project 

Hardware details 
or lightweight 

communication 

Not portable; 
Only applicable for 
GPUs from NVIDIA 

Only tool which 
supports CUDA, 

OpenCL, and 
Shared memory 
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Example: Matrix Transpose 
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Matrix Transpose (CUDA kernel) 
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Matrix Transpose (OpenMP) 
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Matrix Transpose (CalCon) 
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//Starting the parallel block named transpose 

parallelstart (transpose); 

 

//Use of abstract API getLevel1 

int xIndex = getLevel1(); 

 

//Use of abstract API getLevel2 

int yIndex = getLevel2(); 

 

if(xIndex < width && yIndex < height){ 

      int index_in  = xIndex +width*yIndex;        

      int index_out = yIndex +height*yIndex; 

      odata[index_out]= idata[index_in];  

} 

 

//Ending the parallel block 

parallelend(transpose); 

                        Abstract DSL code for matrix transpose 

http://cs.ua.edu/graduate/fjacob/software/analysis/ 

Data Flow in GPU 
42 CUDA  kernels 
 were selected 
 from 25 programs. 

Program analysis 
15 OpenCL 
programs 

Shared memory 
10 OpenMP 
programs from 
varying domains 



Conclusion and Future work 
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1. Abstract APIs can be used for abstract GPU programming 
which currently generate CUDA and OpenCL code. 
– 42 CUDA kernels from different problem domains were selected to identify 

the data flow 

– 15 OpenCL programs were selected to compare with their CUDA  counter 
part to provide proper abstraction 

– Focus on essence of parallel computing, rather than language-specific 
accidental complexities of CUDA or OpenCL 

– CUDACL can be used to configure the  GPU parameters separate from the 
program expressing the core computation 

2. Extend our DSL to shared memory; such that programs can 
be executed on a CPU or GPU  CalCon 
– Separating problem and configuration 

– Support Fortran and C 

3. Extend the DSL to a multi‐processor using a Message Passing 
Library (MPL) 
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Questions ? 

http://cs.ua.edu/graduate/fjacob/ 
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OpenMP FORTRAN programs 

N

o 
Program Name Total LOC Parallel LOC 

No. of 

blocks 
R W 

1 
2D Integral with 

Quadrature rule 
601 11 (2%) 1 √ 

2 Linear algebra routine 557 28 (5%) 4 √ 

3 
Random number 

generator 
80 9 (11%) 1 

4 
Logical circuit 

satisfiability 
157 37 (18%) 1 √ 

5 Dijkstra’s shortest path 201 37 (18%) 1 

6 
Fast Fourier 

Transform 
278 51 (18%) 3 

7 
Integral with Quadrature 

rule 
41 8 (19%) 1 √ 

8 
Molecular 

dynamics 
215 48 (22%) 4 √ √ 

9 Prime numbers 65 17 (26%) 1 √ 

1

0 

Steady state heat 

equation 
98 56 (57%) 3 √√ 
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Refined FORTRAN code (OpenMP) 
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 ! Refined FORTRAN program 

call parallel(instance_num,’satisfiability’) 

 

  ilo2 = ( ( instance_num  - id     ) * ilo   & 

         + (              id     ) * ihi ) & 

         / ( instance_num           ) 

 

  ihi2 = ( ( instance_num  - id - 1 ) * ilo   & 

         + (              id + 1 ) * ihi ) & 

         / ( instance_num           ) 

 

  solution_num_local = 0 

 

  do i = ilo2, ihi2 - 1 

 

    call i4_to_bvec ( i, n, bvec ) 

 

    value = circuit_value ( n, bvec ) 

 

    if ( value == 1 ) then 

      solution_num_local = solution_num_local + 1 

 

    end if 

 

  end do 

 

  solution_num = solution_num + solution_num_local 

call parallelend(‘satisfiability’) 

 

! Configuration file for FORTRAN program above 

block ‘satisfiability’ 

 

init: 

!$omp parallel & 

!$omp shared ( ihi, ilo, thread_num ) & 

!$omp private ( bvec, i, id, ilo2, ihi2, 

                 j, solution_num_local, value ) & 

!$omp reduction ( + : solution_num ). 

final:. 

 
 



FORTRAN code (MPI) 
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!Part 1: Master process setting up the data  

if ( my_id == 0 ) then    do p = 1, p_num - 1 

 

      my_a = ( real ( p_num - p,     kind = 8 ) * a   & 

             + real (         p - 1, kind = 8 ) * b ) & 

             / real ( p_num     - 1, kind = 8 ) 

 

      target = p 

      tag = 1 

      call MPI_Send ( my_a, 1, MPI_DOUBLE_PRECISION, & 

                     target, tag, &MPI_COMM_WORLD, & 

                     error_flag ) 

……………………………………………………… 

    end do 

 

!Part 2: Parallel execution  

 

  else 

 

    source = master 

    tag = 1 

    call MPI_Recv ( my_a, 1, MPI_DOUBLE_PRECISION, source,  tag, 

& 

      MPI_COMM_WORLD, status, error_flag ) 

 

    my_total = 0.0D+00 

    do i = 1, my_n 

      x = ( real ( my_n - i,     kind = 8 ) * my_a   & 

          + real (        i - 1, kind = 8 ) * my_b ) & 

          / real ( my_n     - 1, kind = 8 ) 

      my_total = my_total + f ( x ) 

    end do 

    my_total = ( my_b - my_a ) * my_total / real  

                                        ( my_n, kind = 8 ) 

 

  end if 

 

!Part 3: Results from different processes are collected to 

! calculate the final result 

 

  call MPI_Reduce ( my_total, total, 1, 

                    MPI_DOUBLE_PRECISION, & MPI_SUM,  

                    master, MPI_COMM_WORLD, error_flag) 

 

 



Refined FORTRAN code (MPI) 
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!Work share part 

    do p = 1, instance_num - 1 

      my_a = ( real ( instance_num - p,     kind = 8 ) * a   & 

             + real (         p - 1, kind = 8 ) * b ) & 

             / real ( instance_num     - 1, kind = 8 ) 

      call distribute (my_a) 

 

    end do 

 

!Declaring parallel block 

 call parallel(num,’quadrature’) 

 

    my_total = 0.0D+00 

    do i = 1, my_n 

      x = ( real ( my_n - i,     kind = 8 ) * my_a   & 

          + real (        i - 1, kind = 8 ) * my_b ) & 

          / real ( my_n     - 1, kind = 8 ) 

      my_total = my_total + f ( x ) 

    end do 

    my_total = ( my_b - my_a ) * my_total / real  

                                        ( my_n, kind = 8 ) 

 call endparallel(‘quadrature’); 

 

! 

! Configuration file for FORTRAN program above 

! 

block ‘quadrature’ 

init: 

    source = master 

    tag = 1 

    call MPI_Recv ( my_a, 1, MPI_DOUBLE_PRECISION, source,  

tag, & 

      MPI_COMM_WORLD, status, error_flag ). 

 

final: 

call MPI_Reduce ( my_total, total, 1, 

                    MPI_DOUBLE_PRECISION, & MPI_SUM,  

                    master, MPI_COMM_WORLD, error_flag). 

distribute param: 

      call MPI_Send ( param, 1, MPI_DOUBLE_PRECISION, & 

                     target, tag, &MPI_COMM_WORLD, & 

                     error_flag ). 

 

 



Parallel and OpenMP features 
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Shared memory features Parallel features  

Variable modifiers, Critical and 

Singular blocks, 

 Number of threads 

Parallel blocks, Reduction and 

Barrier blocks, 

Number of instances, 

Workshare 


