
Extending Abstract GPU APIs to
Shared Memory

SPLASH Student Research Competition
October 19, 2010

Ferosh Jacob

University of Alabama
Department of Computer Science

fjacob@crimson.ua.edu
http://cs.ua.edu/graduate/fjacob

Parallel programming challenges

“oclMatrVecMul from the OpenCL
installation package of NVIDIA, three
steps – 1) creating the OpenCL context, 2)
creating a command queue and 3) setting
up the program – are achieved with 34
lines of code.”

Duplicated code

Lack of Abstraction
The programmers should follow a
problem-oriented approach rather than
the current machine or architecture-
oriented approach towards parallel
problems.

Performance Evaluation

To make sure the obtained performance
cannot be further improved, a program
may need to be rewritten to different
parallel libraries supporting various
approaches (shared memory, GPUs, MPI)

2

Research question

CUDA

OpenCL

OpenMP

Cg

p-threads

OpenMPI

Is it possible to express parallel programs in a
platform‐independent manner?

CUDA

OpenCL

OpenMP

Cg

3

Solution approach

4

1. AbstractAPIs: Design a DSL that can express two leading
GPU programming languages
– Support CUDA and OpenCL

– Automatic data transfer

– Programmer freed from device variables

2. CUDACL: Introduce a configurable mechanism through
which programmers fine-tune their parallel programs
– Eclipse plugin for configuring GPU parameters

– Supports C (CUDA and OpenCL) and Java (JCUDA, JOCL)

– Capable of specifying interactions between kernels

3. CalCon: Extends our DSL to shared memory; such that
programs can be executed on a CPU or GPU
– Separating problem and configuration

– Support Fortran and C

4. Extend CalCon to a multi‐processor using a Message Passing
Library (MPL)

Phase 1: Abstract APIs
Design a DSL that can express two leading GPU programming languages

Function CUDA OpenCL

Allocate Memory cudaMalloc clCreateBuffer

Transfer Memory cudaMemcpy
clReadBuffer

clWriteBuffer

Call Kernel <<< x , y >>>
clEnqueueNDRange

clSetKernelArg

Block Identifier blockIdx get_group_id

Thread Identifier threadIdx get_local_id

Release Memory cudaFree clReleaseMemObject

Sr. No Application CUDA LOC CPP LOC Abstract LOC #variables reduced #lines reduced API usage

1 Vector Addition 29 15 13 3 16 6

2 Matrix Multiplication 28 14 12 3 14 6

3 Scan Test Cuda 82 NA 72 1 10 12

4 Transpose 39 17 26 2 13 8

5 Template 25 13 13 2 12 6

•XPUmalloc
•GPUcall
•XPUrelease
•GPUinit

API comparison of CUDA and OpenCL

LOC comparison of CUDA, CPP and Abstract API

5

Phase 2: CUDACL
Introduce an easily configurable mechanism through which programmers
fine-tune their parallel programs

Configuration of GPU programs using CUDACL

6

Phase 3: CalCon
Extend our DSL to shared memory such that programs can be
executed on a CPU or GPU

Design details of CalCon

7

Related works

GPU
languages

Cg

Brook

CUDA
abstractions

hiCUDA

CUDA-lite

PGI compiler

CuPP
framework

OpenCL

CalCon

Other works

Concurrencer

Sequoia

Habenero
project

Hardware details
or lightweight

communication

Not portable;
Only applicable for
GPUs from NVIDIA

Only tool which
supports CUDA,

OpenCL, and
Shared memory

8

Example: Matrix Transpose

9

http://biomatics.org/index.php/Image:Hct.jpg

Matrix Transpose (CUDA kernel)

10

Matrix Transpose (OpenMP)

11

Matrix Transpose (CalCon)

12

//Starting the parallel block named transpose

parallelstart (transpose);

//Use of abstract API getLevel1

int xIndex = getLevel1();

//Use of abstract API getLevel2

int yIndex = getLevel2();

if(xIndex < width && yIndex < height){

 int index_in = xIndex +width*yIndex;

 int index_out = yIndex +height*yIndex;

 odata[index_out]= idata[index_in];

}

//Ending the parallel block

parallelend(transpose);

 Abstract DSL code for matrix transpose

http://cs.ua.edu/graduate/fjacob/software/analysis/

Data Flow in GPU
42 CUDA kernels
 were selected
 from 25 programs.

Program analysis
15 OpenCL
programs

Shared memory
10 OpenMP
programs from
varying domains

Conclusion and Future work

13

1. Abstract APIs can be used for abstract GPU programming
which currently generate CUDA and OpenCL code.
– 42 CUDA kernels from different problem domains were selected to identify

the data flow

– 15 OpenCL programs were selected to compare with their CUDA counter
part to provide proper abstraction

– Focus on essence of parallel computing, rather than language-specific
accidental complexities of CUDA or OpenCL

– CUDACL can be used to configure the GPU parameters separate from the
program expressing the core computation

2. Extend our DSL to shared memory; such that programs can
be executed on a CPU or GPU CalCon
– Separating problem and configuration

– Support Fortran and C

3. Extend the DSL to a multi‐processor using a Message Passing
Library (MPL)

References

1. Ferosh Jacob, David Whittaker, Sagar Thapaliya, Purushotham Bangalore,
Marjan Mernik, and JeffGray, “CUDACL: A tool for CUDA and OpenCL
programmers,” in Proceedings of 17th InternationalConference on High
Performance Computing, Goa, India, December 2010, 11 pages.

2. Ferosh Jacob, Ritu Arora, Purushotham Bangalore, Marjan Mernik, and Jeff
Gray, “Raising the level of abstraction of GPU-programming,” in Proceedings
of the 16th International Conference on Parallel and Distributed Processing,
Las Vegas, NV, July 2010, pp. 339-345

3. Ferosh Jacob, Jeff Gray, Purushotham Bangalore, and Marjan Mernik,
“Refining High Performance FORTRAN Code from Programming Model
Dependencies” HIPC Student Research Symposium, Goa, India, December
2010, 5 pages..

14

Questions ?

http://cs.ua.edu/graduate/fjacob/

15

OpenMP FORTRAN programs

N

o
Program Name Total LOC Parallel LOC

No. of

blocks
R W

1
2D Integral with

Quadrature rule
601 11 (2%) 1 √

2 Linear algebra routine 557 28 (5%) 4 √

3
Random number

generator
80 9 (11%) 1

4
Logical circuit

satisfiability
157 37 (18%) 1 √

5 Dijkstra’s shortest path 201 37 (18%) 1

6
Fast Fourier

Transform
278 51 (18%) 3

7
Integral with Quadrature

rule
41 8 (19%) 1 √

8
Molecular

dynamics
215 48 (22%) 4 √ √

9 Prime numbers 65 17 (26%) 1 √

1

0

Steady state heat

equation
98 56 (57%) 3 √√

16

Refined FORTRAN code (OpenMP)

17

 ! Refined FORTRAN program

call parallel(instance_num,’satisfiability’)

 ilo2 = ((instance_num - id) * ilo &

 + (id) * ihi) &

 / (instance_num)

 ihi2 = ((instance_num - id - 1) * ilo &

 + (id + 1) * ihi) &

 / (instance_num)

 solution_num_local = 0

 do i = ilo2, ihi2 - 1

 call i4_to_bvec (i, n, bvec)

 value = circuit_value (n, bvec)

 if (value == 1) then

 solution_num_local = solution_num_local + 1

 end if

 end do

 solution_num = solution_num + solution_num_local

call parallelend(‘satisfiability’)

! Configuration file for FORTRAN program above

block ‘satisfiability’

init:

!$omp parallel &

!$omp shared (ihi, ilo, thread_num) &

!$omp private (bvec, i, id, ilo2, ihi2,

 j, solution_num_local, value) &

!$omp reduction (+ : solution_num).

final:.

FORTRAN code (MPI)

18

!Part 1: Master process setting up the data

if (my_id == 0) then do p = 1, p_num - 1

 my_a = (real (p_num - p, kind = 8) * a &

 + real (p - 1, kind = 8) * b) &

 / real (p_num - 1, kind = 8)

 target = p

 tag = 1

 call MPI_Send (my_a, 1, MPI_DOUBLE_PRECISION, &

 target, tag, &MPI_COMM_WORLD, &

 error_flag)

………………………………………………………

 end do

!Part 2: Parallel execution

 else

 source = master

 tag = 1

 call MPI_Recv (my_a, 1, MPI_DOUBLE_PRECISION, source, tag,

&

 MPI_COMM_WORLD, status, error_flag)

 my_total = 0.0D+00

 do i = 1, my_n

 x = (real (my_n - i, kind = 8) * my_a &

 + real (i - 1, kind = 8) * my_b) &

 / real (my_n - 1, kind = 8)

 my_total = my_total + f (x)

 end do

 my_total = (my_b - my_a) * my_total / real

 (my_n, kind = 8)

 end if

!Part 3: Results from different processes are collected to

! calculate the final result

 call MPI_Reduce (my_total, total, 1,

 MPI_DOUBLE_PRECISION, & MPI_SUM,

 master, MPI_COMM_WORLD, error_flag)

Refined FORTRAN code (MPI)

19

!Work share part

 do p = 1, instance_num - 1

 my_a = (real (instance_num - p, kind = 8) * a &

 + real (p - 1, kind = 8) * b) &

 / real (instance_num - 1, kind = 8)

 call distribute (my_a)

 end do

!Declaring parallel block

 call parallel(num,’quadrature’)

 my_total = 0.0D+00

 do i = 1, my_n

 x = (real (my_n - i, kind = 8) * my_a &

 + real (i - 1, kind = 8) * my_b) &

 / real (my_n - 1, kind = 8)

 my_total = my_total + f (x)

 end do

 my_total = (my_b - my_a) * my_total / real

 (my_n, kind = 8)

 call endparallel(‘quadrature’);

!

! Configuration file for FORTRAN program above

!

block ‘quadrature’

init:

 source = master

 tag = 1

 call MPI_Recv (my_a, 1, MPI_DOUBLE_PRECISION, source,

tag, &

 MPI_COMM_WORLD, status, error_flag).

final:

call MPI_Reduce (my_total, total, 1,

 MPI_DOUBLE_PRECISION, & MPI_SUM,

 master, MPI_COMM_WORLD, error_flag).

distribute param:

 call MPI_Send (param, 1, MPI_DOUBLE_PRECISION, &

 target, tag, &MPI_COMM_WORLD, &

 error_flag).

Parallel and OpenMP features

20

Shared memory features Parallel features

Variable modifiers, Critical and

Singular blocks,

 Number of threads

Parallel blocks, Reduction and

Barrier blocks,

Number of instances,

Workshare

