
Actively Comparing Clones Inside The Code Editor

Actively Comparing Clones
Inside The Code Editor

Ferosh Jacob1 Daqing Hou2 Patricia Jablonski2

1Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham AL 35205

2Electrical and Computer Engineering
Clarkson University
Potsdam NY 13699

May 7, 2010

1/21



Actively Comparing Clones Inside The Code Editor

Outline

1 Introduction
Why CSeR?
Example scenario
With CSeR

2 Design
Requirements
Implementation
An example

3 Validation
Robustness
Comparison with existing tools
Usefulness

4 Conclusion & future work
Conclusion

2/21



Actively Comparing Clones Inside The Code Editor

Introduction

Why CSeR?

What is missing in current copy-paste scenario?

Copy-Paste

Lack of tool support for copy-paste induced clones

Implicit, hidden relationship between clones

Clone differences not obvious

⇒ Time consuming to recover detailed differences between clones
⇒ Guide for conducting similar copy-modify operations in future

3/21



Actively Comparing Clones Inside The Code Editor

Introduction

Example scenario

GUI comparison of SetFilterWizardPage &
ExclusionInclusionDialog

Figure: SetFilterWizardPage & ExclusionInclusionDialog

4/21



Actively Comparing Clones Inside The Code Editor

Introduction

Example scenario

Detailed differences: SetFilterWizardPage &
ExclusionInclusionDialog

5/21



Actively Comparing Clones Inside The Code Editor

Introduction

With CSeR

Tracking and visualizing differences

Figure: SetFilterWizardPage & ExclusionInclusionDialog Differences

6/21



Actively Comparing Clones Inside The Code Editor

Design

Requirements

Actions and Goals in editing

Actions

⇒ Backspace, select and delete, refactoring tools

Goals

⇒ Renaming a variable,inserting a field

7/21



Actively Comparing Clones Inside The Code Editor

Design

Requirements

Use cases for CSeR

No Use Case ID Name

1 UC001 Consistent Tracking
2 UC002 Simple Name
3 UC003 Statements
4 UC004 Arguments
5 UC005 Parameters
6 UC006 Expressions
7 UC007 Comments
8 UC008 Keywords
9 UC009 Fields
10 UC010 Multiple Edit
11 UC011 Delete Operation
11 UC012 Conditional Statements

8/21



Actively Comparing Clones Inside The Code Editor

Design

Implementation

Implementation highlights

While copy and paste

Build ASTs

Find ranges of ASTs

Keep correspondence between ranges

While editing

Keep track of these ranges

Build ASTs, calculate changes by comparing the AST in the
edited range.

Show changes in editor

9/21



Actively Comparing Clones Inside The Code Editor

Design

Implementation

Correspondence

Figure: Correspondence between HelloWorldApp & TestWorldApp

10/21



Actively Comparing Clones Inside The Code Editor

Design

Implementation

Keeping correspondence while editing

Table: HelloWorldApp & TestWorldApp ranges

No Range Description Orginal Currrent Recent

1 Entire package name - package com. sample 0, 19 0, 19 0, 19
2 First part package - com 8, 3 8, 3 8, 3
3 Second part package - sample 12, 6 12, 6 12, 6
4 Class declaration - public class Hello.. 21, 124 21, 123 21, 122
5 Class name - HelloWorldApp 34, 13 34, 12 34, 12
6 Method declaration - public static voi.. 54, 89 53, 89 53, 88
7 Method name - main 73, 4 72, 4 72, 4
8 Parameters - String[] args 78, 13 77, 13 77, 13
9 Parameter type name - String 78, 6 77, 6 77, 6
10 Parameter name - args 87, 4 86, 4 86, 4
11 Method block - { System. out. println(.. 93, 50 92, 50 92, 49
12 Expression statement - Syst..World”); 103, 34 102, 34 102, 33
13 Method invocation - Syst..elloWorld”) 103, 33 102, 33 102, 32
14 Simple name - System 103, 6 102, 6 102, 6
15 Simple name - out 110, 3 109, 3 109, 3
16 Simple name -println 114, 7 113, 7 113, 7
17 String literal - “Hello World” 122, 13 121, 13 121, 12

11/21



Actively Comparing Clones Inside The Code Editor

Design

An example

Correspondence

Figure: Three type of changes

12/21



Actively Comparing Clones Inside The Code Editor

Validation

Robustness

Editing scenarios

No Type Goal Description Action Description Implemented

1

Names

Creating a name Paste or Type
√

2 Replacing part Paste or Type
√

3 Correcting typos Backspace and Type
√

4 Replacing name Bacspace, Type or Paste
√

5 Removing name Backspace,Delete or Type
√

6 Splitting a name Type in between
√

7 Renaming Using tools ×
8

Lists

Creating a new list Type or Paste
√

9 Inserting a new element Type or Paste
√

10 Removing an element Delete, Type or Backspace
√

11 Moving an element Cut and Paste or Copy Paste and Delete
√

12 Removing entire list Backspace or Delete
√

13 Flattening a list inside a list Backspace or Delete
√

14
Expressions

Inserting a new expression Type or Paste
√

15 Updating an expression Type or Paste
√

17 Moving an expression Cut and Paste or Copy Paste and Delete
√

16 Removing an expression Delete, Type or Backspace
√

18
Comments

Commenting code Type Line or Block comment
√

19 Creating an annotation ×
20 Commenting in expression Type Block comments

√

21
Keywords

Inserting a keyword ×
22 Removing a keyword ×
23 Updating a keyword ×

13/21



Actively Comparing Clones Inside The Code Editor

Validation

Comparison with existing tools

Text-based tools

Popular tools

diff

CompareEditor in eclipse

Version editor

In comparison with CSeR

Text-based

Unable to distinguish code and comments

Unable to find moved code

Wrong correspondences

14/21



Actively Comparing Clones Inside The Code Editor

Validation

Comparison with existing tools

Text-based tools example

15/21



Actively Comparing Clones Inside The Code Editor

Validation

Comparison with existing tools

Text-based tools example

16/21



Actively Comparing Clones Inside The Code Editor

Validation

Comparison with existing tools

AST-based Tools

Popular tools

Breakaway

Changedistiller

Level mismatch

Batch mode

Breakaway - For generalization tasks

⇒ First match approach based on similarity threshold
⇒ UnOrdered & ordered mismatches

Changedistiller - Comparing version of a Class

⇒ Limited move operations

17/21



Actively Comparing Clones Inside The Code Editor

Validation

Usefulness

Experiment set up

Experiment Goal

Recreating the scenario through the following steps

1 Identify clones: say FileA, FileB are clones

2 Rename second File, FileB → OrginalFileB

3 Copy and paste first file with second file name, copy FileA &
paste as FileB

4 Make changes in pasted file to make it second file,
FileB=OrginalFileB

18/21



Actively Comparing Clones Inside The Code Editor

Validation

Usefulness

Experiments results overview

Eclipse (19), JavaLobby Community Platform (27), Literature (10)

No Type Overall Distribution (517) Description Internal Distribution

Update (52 %, 268)
1 Variable Name (Vn) 50 %
2 Variable Type (Vt) 26 %
3 Literal (L) 9 %
4 Method (M) 13 %
5 Other (O) <1 %

Delete (32 %, 165)

6 Statement (S) 40 %
7 Method Declaration (M) 30 %
8 Field Declaration (F) 20 %
9 Expression (E) 8 %
10 Parameter (P) 2 %
11 Class Declaration (C) < 1 %

Insert (14, 72 %)

12 Statement (S) 37 %
16 Field Declaration (F) 37 %
15 Method Declaration (M) 16 %
13 Expression (E) 4 %
14 Parameter (P) 4 %
17 Class Declaration (C) 2 %

Move (2 %, 12)

18 Method Declaration (M) 58 %
19 Statement (S) 33 %
20 Class Declaration (C) 8 %

19/21



Actively Comparing Clones Inside The Code Editor

Conclusion & future work

Conclusion

Conclusion & future work

Conclusion

Code editor for tracking and visualizing changes continously

Different from existing tools

Useful, robust and unique

Possible extensions in CSeR

Clone groups

Tracking code and identifying templates

Version control integration

20/21



Actively Comparing Clones Inside The Code Editor

Conclusion & future work

Conclusion

Thank You

Questions ?

Achnowledgements

I would like to thank my Ph.D. advisor, Dr. Jeff Gray (Associate
Professor, University of Alabama), for sponsoring my trip to
IWSC’10.

21/21


	Introduction
	Why CSeR?
	Example scenario
	With CSeR

	Design
	Requirements
	Implementation
	An example

	Validation
	Robustness
	Comparison with existing tools
	Usefulness

	Conclusion & future work
	Conclusion


