THE UNIVERSITY OF

ALABAMA L=

ENGINEERING

Refining High Performance
FORTRAN Code from Programming
Model Dependencies

Ferosh Jacob?!, Jeff Gray?!, Purushotham Bangalore?, Marjan Memik??

!Department of Computer Science, University of Alabama
?Department of Computer and Information Sciences, University of Alabama at Birmingham
3Faculty of Electrical Engineering and Computer Science, University of Maribor
Contact: fjacob@crimson.ua.edu

Challenges in Parallel Programming

w 18 /
§ /
o 1.6
//
c 14
s //
£ 12
= //
1
0.8
0.4
0.2 /
0
19 20 21 22 23 24
e OpenMP 0.04 0.1 0.22 0.48 0.79 1.82
e VP 0.04 0.1 0.19 0.36 0.75 1.55

The execution plot of the satisfiability problem in Figure 1 shows that
even though the performance of OpenMP and MPI are comparable, for
small problems the OpenMP version is faster than an MPI solution. In
cases where the size of the data varies, different versions of the same
program might be required if a single HPC library is used.

Architecture Dependencies in
Parallel Programming

{ Same program \ / Maintenance and \

For different API 1 Updating Code
latforms
p (OpenMP) APl J

(OpenMP)

J

Manually maintaining such variations induces unnecessary redundant effort
that is also very prone to human errors in maintaining and updating the core
algorithms. Therefore, the development of an HPC program is often limited
to a specific parallel library. Otherwise, the programmer pays the price of
developing and maintaining several versions of the same program.

Program Analysis of FORTRAN

OpenMP Programs

Shared memory features

Parallel features

Variable modifiers, Critical
and Singular blocks,
Number of threads

Parallel blocks, Reduction
and Barrier blocks,

Number of instances,
Workshare

No Program Total Parallel No. of
Name LOC LOC blocks
2D Integral
with 0
1 Quadrature 601 11 (2%) 1
rule
Linear
2 algebra 557 28 (5%) 4
routine
Random
3 number 80 9 (11%) 1
generator
Logical
4 circuit 157 37 (18%) 1
satisfiability
Dijkstra’s 0
5 shortest path 201 37 (18%) 1
Fast Fourier 0
6 Transform 278 51 (18%) 3
Integral with
7 Quadrature 41 8 (19%) 1
rule
8 Z”O'ecu.'ar 205 | 48(22%) | 4
ynamics
Prime 0
9 numbers 65 17 (26%) 1
10 Steady state 98 56 (57%) 3

heat equation

Analysis Conclusion

A DSL that uses only the parallel features
can express parallel problems in a
platform-independent manner. Most of
the programs involve an initialization
segment that initializes the execution of
the parallel part, and a code segment that
IS used to collect data from the parallel

instances

Proposed Approach to Express
Parallel Programs in FORTRAN

FORTRAN
program

Parallel function calls +

configuration

Generating abstract API
FORTRAN parsing and refactoring

CalCon

Abstract API Pre—de.fmed
functions

"

FORTRAN parsing and refactoring

Generating source code

Code for desired
Architecture

MPI code

MPI Case

IPart 1: Master process setting up the data

if { my id == 0) then dop =1, pnum - 1
my a = (real (p num - p, kind = 8) * a &
+ real (p -1, kind =8) * b) &
/ real (p_num - 1, kind = 8)
ftarget = p
tag = 1
call MPT Send (my 2, 1, MPT DOUBLE PRECISION, &
target, tag, &MPI_COMM_WCRLD, &
error flag)
end do
IPart 2: Parallel execution
else
source = master
tag = 1
call MPI Recv (my_a, 1, MPI _DOUBLE PRECISION, source,
&
MPI COMM WORLD, status, error flag)
my_total = 0.0D+00
do i =1, my n
x = { real (my n - i, kind = 8) * my a &
+ real | i-1, kind=28) *my b) &
/ real (my_n - 1, kind = 8
my total = my total + £ (x)
end do
my teotal = (my b - my a) * my total / real
(my n, kind = 8)
end if

!Part 2: Results from different processes are collected to
I calculate the final result
call MPI_ Reduce (my_total, total, 1,
MPI DOUBLE PRECISION, & MPI SUM,
master, MPI COMM WORLD, error flag)

tag,

Study

IWork share part
do p = 1, instance num - 1
my a = {(real (instance num
+ real | D -
/ real (instance num
call distribute (my a)
end do
'Declaring parallel block
call parallel (num, "quadrature’)
my total = 0.0D+00

do i =1, my n
®x = (real (my_n - i, k
+ real (i-1, k
/ real (my n -1, k
my total = my total + £ (x
end do
my total = (my b - my a) *m

call endparallel (‘quadrature’);
I
| Configuration file for FORTRAEN p
I
klock ‘quadrature’
init:
source = master
tag =1
call MPT Recv (my a, 1, MPT D

MPI COMM WORLD, status, erro

final:
call MPI Reduce (my total, total,
MPI DOUBLE PRE

- br
1, kind =8) * b) &
-1, kind = 8)

ind = 8 } * my_a &
ind = 8 } * my b) &
ind = 8)

)

y total / real
(my n, kind = 8 }

rogram akove

CUBLE PRECISION, source,
r flag).

1,
CISION, & MPI SUM,

master, MPI COMM WORLD, error flag).

distribute param:
call MPI Send (param, 1, MP
target, tag,
error flag).

I DOUBLE PRECISION, &
§MPT COMM WORLD, &

kind = 8) * a

tag,

Conclusion and Future Work

Conclusion:

For the evolution of high performance FORTRAN code, it is necessary to separate the code
of the core computation from the machine or architecture dependencies that may come
from usage of a specific API.

We analyzed ten FORTRAN programs from diverse domains to understand the usage of
OpenMP in scientific code. The analysis revealed that programs often share a common
structure such that platform and machine details could be specified in a different file.

A case study is included to show that the approach can be extended to other architectures.

Future work:
Includes refactoring the legacy code to the approach specified in this paper with
minimum input from the user. Another direction will be focused on executing the
parallel programs to a GPU. Conducting a user study to explore the advantages and
disadvantages from a human factors perspective is another direction of work.

Thank You

e Questions?

Ferosh Jacob?, Jeff Gray?, Purushotham Bangalore?, Marjan Memik?3?

!Department of Computer Science, University of Alabama
’Department of Computer and Information Sciences, University of Alabama at Birmingham
3Faculty of Electrical Engineering and Computer Science, University of Maribor

Contact: fjacob@crimson.ua.edu

