ALABAMA LB

t NGINEER

CUDACL: A Tool for
CUDA and OpenCL Programmers

Ferosh Jacob?!, David Whittaker?, Sagar Thapaliya?,
Purushotham Bangalore?, Marjan Memik3?, and Jeff Gray?

IDepartment of Computer Science, University of Alabama
2 Department of Computer and Information Sciences, University of Alabama at Birmingham
3 Faculty of Electrical Engineering and Computer Science, University of Maribor

Contact: fjacob@crimson.ua.edu

Challenges to GPU programmers

1. Accidental complexity
- Improper level of abstraction

1. Is it possible to allow programmers to use GPU’s as just
another tool in the IDE?

2. A programmer often selects a block of code and specifies the
device on which it is to execute in order to understand the
performance concerns. Should performance tuning be at a
high-level of abstraction, such as that similar to what a
Graphical User Interface (GUI) developer sees in a What You
See Is What You Get (WYSIWYG) editor?

Challenges to GPU programmers

2. Accidental complexity

1.

- Configuration details

A simple analysis for CUDA or OpenCL reveals that there are
few configuration parameters, but many technical details
involved in the execution. How far can default values be
provided without much performance loss?

How much information should be shown to the user for
performance tuning and how much information should be
hidden to make programming tasks more simplified?

GPU program analysis

Goal: To explore the
abstraction possibilities
observed from their
common capabilities.

GPU programs

Goal: To study the flow of data

from GPU to CPU or vice versa, Goal: To extract the possible
the flow of data between multiple templates from an OpenCL
threads, and the flow of data program.

within the GPU (e.g., shared to
global or constant).

CUDA analysis

For the analysis, 42 kernels were selected from 25 randomly
selected programs that are provided as code samples from the
installation package of NVIDIA CUDA.

Level A
CUDA kernel classification

M Level A MW level B Level C
12% G Level B

bl e

OpenCL analysis

Motivation: In a program oclMatrVecMul from the OpenCL
Installation package of NVIDIA, three steps — 1) creating the
OpenCL context, 2) creating a command queue for device 0, and 3)
setting up the program — are achieved with 34 lines of code.

If the steps for a general OpenCL program can be found,
templates can be provided that can free the programmer from
writing much of the common code manually. Furthermore, one or
more steps can be abstracted to standard functions to simplify the
development process.

Data: 15 programs were randomly selected from the code samples
that are shipped with the NVIDIA OpenCL installation package.

Analysis conclusions

« CUDA
« Automatic Code Conversion: There are a fair amount of
programs (48%), whose code can be automatically generated if
the sequential code is available.

« Copy mismatch: There exists programs (12%) where all the
variables in the kernel are not copied. Even though the variables
are not copied, memory should be allocated in the host code
before the first access.

* OpenCL
 Default template: Every OpenCL program consists of creating
a context, setting up the program, and cleaning up the OpenCL
resources.
* Device specification: Each kernel could be specified with a
device or multiple devices in which the kernel is meant to be
executed.

i

i

Design of CUDACL

C or Java code

Configuration
“w parameters

CDT/IDT Parsing

C or Java code with Abstract APIs

functions

CDT/IDT Parsing

C with OpenCL

C with CUDA

Java with OpenCL

Java with CUDA

CUDACL in action

13 for (j =0; j <N ; j++) {

ig cljl=aljl+blij]l startline 13
= + ' :

16 . . . + endline 17

17 } name ArrayAdd

_GPUcopy(a , true);
_GPUcopy(b , true);

_GPUcall("ArrayAdd",params(a , b , N));
~GPUcopy(c,false);

_GPUrelease(a);

_GPUrelease(b);

_GPUrelease(c);

Host code of Arrayadd

CUDACL in action

for (j = 0; j < N; j++) { startline 13

cljl = aljl + b[jl; -+ endline 17
name ArrayAdd

void GPU Method ArrayAdd(int[] a, int[] b, int[] c, int N) {

int j = getGloballd();

if ((j <N) {

cljl = alj]l + bljl;

Kernel code of Arrayadd

CUDACL in action

|| [§ test.c \ [J] cseRFileListener.jav ‘f[J] ParseHelper.java ‘ [J] MainVisitor.java | PartVisitor.java ’ [3] NodeVisitor.java lE] CLUDA Editor 53

CLUDA Configuration

Parallel blocks
The list of parallel blocks from the file ArrayAdd.c

[&] ArrayAdd

~ Variables
Variables identified and classified by static code analysis
Input Variables [Ha £ b [c

Output Variables Ec
Loop Variables [j

v~ GPU Execution parameters
Thread (work item) and block (work group) size

Thread(x) |256| Thread(y) [001| Thread(z) (001]
Block(x) [001]|Block(y) [001]

[£] use OpenCL API based on variable ’

» Linking sequential file

Code Generation
© CUDA

© OpenCL Execute on the device F

[In same file

Generate code

Eclipse plug-in editor for configuration

Case study 1

1. Creation of Octree with CUDA

Octree is a popular tree data structure that is often used to represent
volumetric data. Volumetric 3D data is widely used in computer
graphics

* Program written in C language

 Level A program

35 T T T T T T T T T T T T T T T T T
I Slequential n‘:ode R ' +
Parallel code with CUDACL ---x--- |
3 - Hand-written parallel code # [
III
)
25 | .
III
II
wz ?r [
£ f
= 15 - -
||I|l
1 / ¥
+
05 A
*,.#
Uae--r--—-.——.-*--T—---.--.—qg-—v———-——-xEH'—M-"' S L
100 1000 10000 100000 1e+06 1e+07 1e+08

log(Size of data)

Case study 2

» Edge detection with OpenCL

Farmland is found by using a pattern
matching algorithm to search for large,
flat, contiguous squares and circles on the
edge map of the land, which is

created by running a Sobel edge detector.

» Program written in Java language
 Level C program

‘ mbuffe_rx\

S /
Y
convolve
A
o \
dedle buffer

findstatus
RN
statusbuffer) I
-.___._'_ _. r___ ‘/.'
<

finishstatus

.4-.;: /

scaleoutput

. .f/-\

v

< outbuffer)

=

Related works

Sequential

code to Parallel

- PFC? — hiCUDAS3 CUDACL
- PAT? — CUDA-lite*

R. Allen and K. Kennedy,“PFC: a program to convert fortran to parallel form,” In Supercomputers: Design and Applications, pp.
186-203, 1984

B. Appelbe, K. Smith, and C. McDowell, “Start/Pat: a parallelprogramming toolkit,” IEEE Softw., pp. 29—-38, 1989.

T.D. Han and T. S. Abdelrahman, “hiCUDA: A high-level directivebased language for GPU programming,” in Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing Units, Washington, D.C., March 2009, pp. 52-61..

S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-M. W. Hwu, “CUDAlite: Reducing GPU programming complexity,” in Proceedings
of the International Workshop on Languages and Compilers for Parallel Computing,Edmonton, Canada, July 2008, pp. 1-15.

Conclusion and Future work

Conclusion

« A graphical interface is available with default valuesto configure
a GPU parallel block in ‘C* and Java programs to generate CUDA
and OpenCL programs.

« Two case studies were presented to show that CUDACL, and its
associated tool support within Eclipse, can be useful for a wide range
of applications.

Future work
 As an extension of the work, a Domain-Specific Language (DSL) is

being designed to represent the interface for the configuration.
» More examples should be tried to evaluate the tool.

Thank You

e Questions?

Ferosh Jacob?, David Whittaker?, Sagar Thapaliya?,
Purushotham Bangalore?, Marjan Memik3?, and Jeff Gray!

IDepartment of Computer Science, University of Alabama
2 Department of Computer and Information Sciences, University of Alabama at Birmingham
3 Faculty of Electrical Engineering and Computer Science, University of Maribor

Contact: fjacob@crimson.ua.edu
http://cs.ua.edu/graduate/fjacob/

mailto:fjacob@crimson.ua.edu
http://cs.ua.edu/graduate/fjacob/

