
CUDACL: A Tool for
CUDA and OpenCL Programmers

Ferosh Jacob1, David Whittaker2, Sagar Thapaliya2,
Purushotham Bangalore2, Marjan Memik32 , and Jeff Gray1

1Department of Computer Science, University of Alabama
2 Department of Computer and Information Sciences, University of Alabama at Birmingham

3 Faculty of Electrical Engineering and Computer Science, University of Maribor

Contact: fjacob@crimson.ua.edu

Challenges to GPU programmers

1. Accidental complexity

 - Improper level of abstraction

1. Is it possible to allow programmers to use GPU’s as just

another tool in the IDE?

2. A programmer often selects a block of code and specifies the

device on which it is to execute in order to understand the

performance concerns. Should performance tuning be at a

high-level of abstraction, such as that similar to what a

Graphical User Interface (GUI) developer sees in a What You

See Is What You Get (WYSIWYG) editor?

Challenges to GPU programmers

2. Accidental complexity

 - Configuration details

1. A simple analysis for CUDA or OpenCL reveals that there are

few configuration parameters, but many technical details

involved in the execution. How far can default values be

provided without much performance loss?

2. How much information should be shown to the user for

performance tuning and how much information should be

hidden to make programming tasks more simplified?

GPU program analysis

Goal: To explore the

abstraction possibilities

observed from their

 common capabilities.

Goal: To study the flow of data

from GPU to CPU or vice versa,

the flow of data between multiple

 threads, and the flow of data

within the GPU (e.g., shared to

global or constant).

Goal: To extract the possible

templates from an OpenCL

program.

CUDA analysis

For the analysis, 42 kernels were selected from 25 randomly

selected programs that are provided as code samples from the

installation package of NVIDIA CUDA.

48%

40%

12%

CUDA kernel classification

Level A level B Level C

Level A

Level B

Level C

OpenCL analysis
Motivation: In a program oclMatrVecMul from the OpenCL

installation package of NVIDIA, three steps – 1) creating the

OpenCL context, 2) creating a command queue for device 0, and 3)

setting up the program – are achieved with 34 lines of code.

Data: 15 programs were randomly selected from the code samples

that are shipped with the NVIDIA OpenCL installation package.

If the steps for a general OpenCL program can be found,

templates can be provided that can free the programmer from

writing much of the common code manually. Furthermore, one or

more steps can be abstracted to standard functions to simplify the

development process.

Analysis conclusions
• CUDA

• Automatic Code Conversion: There are a fair amount of

programs (48%), whose code can be automatically generated if

the sequential code is available.

• Copy mismatch: There exists programs (12%) where all the

variables in the kernel are not copied. Even though the variables

are not copied, memory should be allocated in the host code

before the first access.

• OpenCL

• Default template: Every OpenCL program consists of creating

a context, setting up the program, and cleaning up the OpenCL

resources.

• Device specification: Each kernel could be specified with a

device or multiple devices in which the kernel is meant to be

executed.

Design of CUDACL

CDT/JDT Parsing

C or Java code

C or Java code with Abstract APIs Pre defined
functions

Configuration
parameters

 C with OpenCL

CDT/JDT Parsing

 C with CUDA

 Java with OpenCL Java with CUDA

CUDACL in action

Host code of Arrayadd

CUDACL in action

Kernel code of Arrayadd

CUDACL in action

Eclipse plug-in editor for configuration

Case study 1

1. Creation of Octree with CUDA

Octree is a popular tree data structure that is often used to represent

volumetric data. Volumetric 3D data is widely used in computer

graphics

• Program written in C language

• Level A program

Case study 2

• Edge detection with OpenCL

Farmland is found by using a pattern

matching algorithm to search for large,

flat, contiguous squares and circles on the

edge map of the land, which is

created by running a Sobel edge detector.

• Program written in Java language

• Level C program

Related works

Sequential
code to Parallel

PFC1

PAT2

CUDA

hiCUDA3

CUDA-lite4

OpenCL

CUDACL

1. R. Allen and K. Kennedy,“PFC: a program to convert fortran to parallel form,” In Supercomputers: Design and Applications, pp.
186–203, 1984

2. B. Appelbe, K. Smith, and C. McDowell, “Start/Pat: a parallelprogramming toolkit,” IEEE Softw., pp. 29–38, 1989.
3. T. D. Han and T. S. Abdelrahman, “hiCUDA: A high-level directivebased language for GPU programming,” in Proceedings of 2nd

Workshop on General Purpose Processing on Graphics Processing Units, Washington, D.C., March 2009, pp. 52–61..
4. S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-M. W. Hwu, “CUDAlite: Reducing GPU programming complexity,” in Proceedings

of the International Workshop on Languages and Compilers for Parallel Computing,Edmonton, Canada, July 2008, pp. 1–15.

Conclusion and Future work

Conclusion

• A graphical interface is available with default values to configure

a GPU parallel block in ‘C’ and Java programs to generate CUDA

and OpenCL programs.

• Two case studies were presented to show that CUDACL, and its

associated tool support within Eclipse, can be useful for a wide range

of applications.

Future work

• As an extension of the work, a Domain-Specific Language (DSL) is

being designed to represent the interface for the configuration.

• More examples should be tried to evaluate the tool.

Thank You

• Questions?

Ferosh Jacob1, David Whittaker2, Sagar Thapaliya2,
Purushotham Bangalore2, Marjan Memik32 , and Jeff Gray1

1Department of Computer Science, University of Alabama
2 Department of Computer and Information Sciences, University of Alabama at Birmingham

3 Faculty of Electrical Engineering and Computer Science, University of Maribor

Contact: fjacob@crimson.ua.edu
http://cs.ua.edu/graduate/fjacob/

mailto:fjacob@crimson.ua.edu
http://cs.ua.edu/graduate/fjacob/

