
Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Code Template Inference Using Language Models

Ferosh Jacob and Robert Tairas
jacobf,tairasr@cis.uab.edu

Department of Computer and Information Sciences
University of Alabama at Birmingham

April 17, 2010

1/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Introduction
Goal

What are Templates?

File Operations

t r y {
FileReader input = new FileReader (aFile)) ;
t r y {

wh i l e ((line = input . read () != −1){
contents . append (line) ;

}
}
f i n a l l y {

input . close () ;
}

}
catch (IOException ex) {

ex . printStackTrace () ;
}

Java Collection FrameWork e.g., List, Map

JDBC Operations

2/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Introduction
Goal

Project-Specific Templates

Hibernate Usage Examples

3/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Introduction
Goal

Project-Specific Templates

Hibernate Usage Examples

4/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Introduction
Goal

The Goal

Given

An incomplete code segment, which is the unsaved portion of code
that is being edited by the programmer.

Goal

Find the closest matching template if one exists from a generated
database

5/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Usage and Template
The Idea

Usage and Template

What are templates and usages?

From source code Usages to Templates

6/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Usage and Template
The Idea

A 4-step process

1 Find the frequent code usages

2 Learn from the usages

3 Monitor programmer editing actions in editor

4 Propose template within the editor

7/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Usage and Template
The Idea

Templates within Editor

End goal : After programmer typing ’Ses’

Editor Screenshot

8/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Training and Testing LMs
An overview

Data Collection and Language Models

Data Collection and Clones

Repeated usage ⇒ Clones

Every Clone group has a template linked to it

Clone Detectors: Simscan, Deckard, CCFinder

Training and Language Models (LM)

Words sequence probability ⇒ Language Models

3 gram method

Made some changes to meet domain specific changes

LMs are generated for every clone group

9/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Training and Testing LMs
An overview

A pictorial representation of the tool

Editor Screenshot

10/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Limitations and Future Work

Dependency with the Clone detectors

Are all clones useful?

Do clone detectors get all usages?

Usage to template convertion

More usages better the template

Similar templates

Pre and Post processors for Clone detectors

Include project specific information

Removes unwanted clones

11/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Conclusion

Applied NL techniques in Software Engineering

A tool to predict source code using Language model

Word based trigrams are efficient for creating source code
LM’s

A comparative study with related works

12/13

Problem Statement
A Proposed Solution

Implementation
Limitations and Future Work

Conclusion

Thank You

13/13

	Problem Statement
	Introduction
	Goal

	A Proposed Solution
	Usage and Template
	The Idea

	Implementation
	Training and Testing LMs
	An overview

	Limitations and Future Work
	Conclusion

